
Task-oriented robot control user interface designer
for cable-driven soft robots without kinematic

models
Haoyan Li, Tomoka Nishino, Binod Dhakal, Hironori Mitake, Shoichi Hasegawa

Abstract—This paper introduces a method to allow casual
users to create task-oriented control user interfaces (UIs) for
cable-driven soft robots without prior knowledge, and the extra
time and labor costs in measurements or calibration. The task
space created by the proposed method is that it no longer must
be physics-based, which provides more freedom, especially for
casual users. Any control UI created previously could be used to
create new UIs. We also develop a graphical user interface (GUI)
implementing the proposed method for a feasibility evaluation.
Practical cases that use the proposed GUI to create control UIs
for particular tasks of a cable-driven soft robot arm system have
been investigated. Finally, we conduct a concise user evaluation
to test the usability of the proposed method for casual users.

Index Terms—Soft robotics, Robot kinematics, Robot control,
task-oriented control

I. INTRODUCTION

As an emerging and rapidly developing field, soft robotics
has received much attention from researchers in recent years,
inspired by natural biology and benefiting from the develop-
ment of new materials and mechanisms [1]–[5]. Compared to
traditional rigid-body robots, a soft robot has intrinsic safety
with its environments and operators due to its compliant
nature. Deformable materials have the potential to exhibit
adaption for unpredictable environments. Owing to soft and
lightweight materials, they also ensure agility and efficiency
for robot systems. Researchers expect that these capabilities
that are different from conventional rigid body robots could
bring more possibilities for the future of robotics.

However, beyond the advantages, the soft nature also
presents a whole new set of challenges [6] that may not arise
in conventional robotics. Conventional approaches to robot
control assume an inherent linkage structure consisting of
movable joints and unchanged links for a robot. The kinemat-
ics for a rigid robot could be modeled as a set of coordinate
transformations of joint rotations. Meanwhile, deformations
of the materials occur on the whole body of the soft robot,
and the distribution of the deformations depends on the soft
robot’s design. Any change in the deformable structure of a
soft robot, even if it might only partially affect the structure,
would cause a significant change in the robot’s kinematics.
Additionally, a deterministic mathematical model for the
kinematics, composed of actuator’s angles or displacements,
is not evident to a soft robot.

In order to compose such a kinematic model, researchers
often consider an appropriate modeling method, such as
Piece-wise Constant Curvature (PCC) or the Finite Elements

Model (FEM). The PCC [1], [7] understands a soft robot
under a simplified assumption, whose performance depends
on the robot’s morphology and the characteristics of the
actuation system. The FEM [8], on the other hand, models
the complex deformations of soft robots, but its computation
results would be significantly impacted by slight changes in
some material parameters.

Using a data-driven calibration method, like goal babbling
learning [9] or neural networks [10], to develop a kinematic
model allows researchers to avoid parameters fitting for
various deformable materials. However, to develop a well-
defined model, it is critical to create sufficient, high-quality
datasets that cover the motion range of actuators of soft
robots as much as possible with correct labels. It requires
a significant investment of time and labor to prepare such a
dataset.

Actuator
Space

Config.
Space Task Space

(a) Conventional Methods

Actuator
Space Task Space

(b) Proposed Method

Fig. 1. The mappings of inverse kinematic models. The task space of a
conventional method usually consists of end-effectors’ coordinates, whereas
our method is flexible in that users can design it depending on their
interpretations. A configuration space usually depends on the selected model
of robot, which is ignored by our method. An actuator space directly consists
of control parameters that are related to actuators.

Conventional approaches, in essence, try to find the maps
between three robotics spaces, the actuator space, the con-
figuration space, and the task space (see Figure 1). For an
inverse kinematic model in particular, the task space is often
defined by the end-effectors’ coordinates of a soft robot,
which makes covering all the aspects difficult. Moreover,
conventional approaches also require substantial prerequisites
of professional knowledge. The challenge of building an
appropriate kinematic model for soft robots restricts the

2022 IEEE 5th International Conference on Soft Robotics (RoboSoft)
April 4-8, 2022, Edinburgh, UK

978-1-6654-0828-8/22/$31.00 ©2022 IEEE 231

20
22

 IE
EE

 5
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
t R

ob
ot

ic
s (

Ro
bo

So
ft

) |
 9

78
-1

-6
65

4-
08

28
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

RO
BO

SO
FT

54
09

0.
20

22
.9

76
21

02

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

development of soft robots.
In this paper, we introduce a novel method to allow casual

users to create task-oriented control user interfaces (UIs) for
cable-driven soft robots without prior knowledge and extra
time and labor costs such as in measurements or calibration.
The task space created by the proposed method is that it
no longer has to be physics-based, which provides more
freedom, especially for casual users. Any control UI created
previously could be used for other UIs. We also developed
a graphical user interface (GUI) implementing the proposed
method for the feasibility evaluation. Several practical cases
that use the proposed GUI to create control UIs for particular
tasks of a cable-driven soft robot arm system have been
considered. Finally, we conduct a user evaluation to test the
usability of the proposed method for casual users.

The paper is organized as follows: Section II introduces
several works in the fields of soft robotics and computer
graphics (CG). In Section III, we formulate the concept of
our method in detail, and the implementation is presented
in Section IV. Section V introduces the GUI and the soft
robot arm system used in the evaluation and illustrates some
typical usages of our method. Section VI describes the user
evaluation and provides the results and discussion. Finally,
we provide some conclusions and identify future works in
Section VII.

II. RELATED WORKS

Various conventional approaches have been proposed to
find a kinematic model to control soft robots. Takase et
al. [11] proposed an inverse kinematic (IK) model and
calibration method to generate motions for a cable-driven
soft toy robot. Duriez [8] proposed a real-time FEM method
to control elastic soft robots, while Bern et al. [12] proposed
a Soft IK to find a set of activations for each contractile
element that deforms the model mesh based on the FEM
method. A series of works by Giorelli et al. [10] addressed
the challenges of finding a kinematic model for a cable-
driven soft robot. They have implemented a Jacobian-based
computational approach and a neural network approach to
learning an inverse kinematic model. Schelagenhauf et al.
[13] presented a series of control strategies for soft ma-
nipulators. Their method was used to control multi-fingered
tendon-driven hands by a glove-type control interface. They
also implemented several methods, including FEM-based and
learning-based, to solve inverse kinematics and compared the
performance of the methods.

In the computer-assisted animation or computer graphics
(CG) field, several methods have been proposed as the ”repa-
rameterization,” which has a similar procedure that maps an
artificial data space, sometimes called ”state space,” to the
configuration space of CG characters or graphics. However,
the purpose of using mapping in our method is different
from the works in CG. For CG, the control points in the
configuration space are made for some specific purpose.
For example, the purpose of setting two control points for
the Cubic Bezier algorithm is to create a smooth curve.

The calculations behind algorithms are generally apparent to
users. On the other hand, the relationship between actuator
space and the robot’s posture depends on the configuration of
the actuators, according to the design of a soft robot, which is
not apparent to users. Moreover, the CG object typically has
a higher degree of freedom than a robot. Most of its possible
configuration sets only show meaningless and useless visuals.
Hence, using the ”reparameterization” method in CG reduces
the high dimensionality caused by a complex configuration
of its control algorithm. In contrast, our method lets users
define an uncertain relationship between the robot’s posture
and displacements of the actuators.

Rademacher et al. [14] have proposed a view-dependent
model to adapt artistic distortions of 2D cel animation onto
3D character models for 3D animation. The distortions were
preserved in a geometry that was a minimal composition
of a simplicial map. The triangle consisted of three camera
view-related positions. Ngo et al. [15] showed the simplicial
configuration modeling could allow users to edit a graphic
object freely while keeping the visual integrity of computer
graphics by embedding free-form constraints. Both used a
simplicial complex model to preserve data structure and
interpolated a composite image or a posture of a 3D model
from new input, which is also used in our methods. Igarashi et
al. [16] introduced a system-implemented spatial keyframing
technique for performance-driven character animation. Their
results showed the usability and efficiency of their system for
casual users to create an expressive animation of imaginary
characters. However, since the spatial coordinates in a 3D
space are the key component of this technique, their method
is not applicable for some spatial-unrelated motions.

III. PROPOSED METHOD

Our aim is to create an intuitive user interface (UI) for
soft robot control regarding users’ interpretation of intended
tasks. In the case of a robot with a kinematic model, the end-
effector’s space is often used as the task space for the robot
controller. Contrarily, here we do not have a kinematic model
for a soft robot, and neither its end-effector space nor end-
effectors are known. Instead of preparing a kinematic model,
users could use the imagery of the robots and tasks in their
minds.

Our proposed method supposes that a user has task im-
agery in mind as a graph structure, whose nodes correspond
to the states of the robot, which are also in the user’s mind.
The method then translates the graph into a graphical user
interface on a two-dimensional display. This process consists
of four procedures, as shown in Figure 2. First, we ask the
user to copy the graph of the task imagery into a graph on
the GUI, which represents the task space. Next, to make
the graph usable as a robot control UI, we transform the
graph into a simplicial complex, where points inside could
be interpolated. After defining the simplicial complex, users
assign actuator’s displacements that direct the state of the
robot corresponding to each node in mind. Finally, this
continuously defined simplicial complex represents the robot

232

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

(a) Procedures

(b) Data structure inside simplicial mapping

Fig. 2. The concept underlying the proposed method.

task space. Therefore, the user could use it as the robot
control UI by manipulating a control point on the simplicial
complex to make the soft robot adopt desired postures.

A. Imaging Task Graph

When users plan to enact a soft robot task, such as adopting
a particular posture or taking an object, they usually have
unique interpretations in their minds for the target task,
according to their knowledge backgrounds and observations
of the soft robot and the environment. As one of the possible
embodiments for these interpretations, the graph structure
is chosen here. A node represents one particular task state
corresponding to a specific posture of a soft robot in users’
minds. A transition between two different states would be
represented as an edge. Hence we have a state graph with a
set of task state nodes and a set of state transition relation-
ships.

B. Transforming Graph to Simplicial Complex

In order to use the graph as a robot control GUI, the
transition between two different state nodes has to be con-
tinuous. This requires the interpolation of nodes, which are
connected by edges. Here we choose the simplicial complex
to achieve this goal. Any arbitrary point inside the simplicial
complex could be interpolated by barycentric coordinates.
Consider that for a simplicial complex, the interior region
is only defined by the barycentric coordinates. In order to
create a useful robot controller, the exterior of the simplicial
complex should be defined as well. In Section IV, we will
introduce the implementation of the extrapolation method in
detail.

The reason we choose a simplicial complex to interpolate
the task space is its robust topological characteristic. The
states and their generated space will always be preserved
by the simplicial complex itself, regardless of the geometric
realization. Another interpolation method, the radial basis
function (RBF), is widely used in different fields [16], [17].
The RBF interpolation depends on the choice of a distance
function. In our case, distances, or the geometric shape of the
task graph, are not essential for our purposes, as we focus on
the nodes and their transitions. Using a topological space to
represent our task state space is a more appropriate choice.

Most people are unfamiliar with spaces of more than three
dimensions. However, for the either original graph in their
minds or the transformed simplicial complex, the dimension
of the structure could be more than three. For example, the
shape of a complete graph with four nodes is a tetrahedron,
namely a non-planar graph. The high dimensionality may
cause many difficulties in visualization in a 2D GUI. Mean-
while, people are used to using pen and paper to illustrate
their ideas. Therefore, we limit the maximum dimension of a
simplicial complex to two (up to triangles), and the simplicial
complex in task space will be drawn on a 2D canvas of the
proposed GUI.

To assist in creating a simplicial complex more effectively,
the transformation from a graph to a simplicial complex
can also be achieved via the Delaunay triangulation [18]
algorithm, in addition to specifying triangles directly. Users
select and group target state nodes that have transitions with
each other, and the algorithm will help construct the target
simplicial complex on the 2D GUI.

C. Assigning Actuator’s Displacements

Since we have the simplicial complex representing the task
space drawing on the UI, the next step is to assign each
state node of the simplicial complex with a specific set of
displacements of the soft robot’s actuators. The displacements
represent a corresponding soft robot’s posture that matches
the user’s impressions of the task node. Users could also
adjust the task space to be more precise by adding more
state nodes into the existing simplicial complex.

233

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

D. Control Robot in Task Space

Once assigning all the nodes with their corresponding actu-
ator displacements, a piece-wise linear, continuous simplicial
map is generated between two homeomorphic topological
spaces: the task and actuator spaces. Any input at an arbitrary
point in the task space will be mapped to a set of robot
actuators’ displacements that represent the robot’s expected
posture in users’ minds.

E. Multi-maps

Notice that, sometimes, the user’s interpretation of the task
might include several different graphs. For example, when
manipulating a soft robot to catch and release an object,
one control UI controls catch and release, and the other
controls the position where the catch-and-release happens.
In that case, users could use two simplicial complexes to
represent two different task state graphs and then manipulate
these two simplicial complexes simultaneously to achieve the
task. This combination of two or more simplicial maps could
be considered as bi-linear or multi-linear simplicial maps.
Details about multi-linear simplicial maps will be described
in Section IV.

F. Chain of Simplicial Maps

In order to maximize the reusability of task spaces that we
created, instead of actuator space, the output of the higher-
level task space could be a point in a lower-level task space
which represents a fundamental manipulation task of the soft
robot. This feature of reusability of task spaces is called in
this paper the chain of simplicial maps. Using this feature,
users can create different control UIs and then combine
them as a chain. For example, one might create two low-
level controllers for each soft robot arm and then combine
them with a high-level controller that achieves the posture
performing the task of two robot arms.

IV. IMPLEMENTATION

In our method, we used simplicial complexes to represent
users’ interpretations of tasks and construct task spaces, and
any arbitrary point in a simplicial complex hence could
be interpolated. In order to maximize the usability of our
method, we also extend an extrapolation method for the
exterior of a simplicial complex, which is not defined in
previous works.

A. Interpolation

A simplicial complex [15], [19] is commonly used for
constructing a continuous data space from discrete data
points. Its topologically invariant characteristics hold the
connectivity of points with flexible geometry realizations. A
k-simplex, written as ∆k, is the simplest geometric form that
consists of k + 1 points in space. For any arbitrary point v
in a k-simplex, there is

v =

k∑
i=0

λivi, (1)

where 0 ≤ λi ≤ 1,
∑k

i=0 λi = 1, and vi are the coordinates
of the vertex of the k-simplex. The set of λi for the point v
is called the barycentric coordinate of point v.

A simplicial complex K is a finite collection composed
of simplices, which satisfies the conditions that every face
of a simplex from K is in K as well, and the non-empty
intersection of any two simplices δ1, δ2 ∈ K is a face of both
δ1 and δ2. The dimension of a simplicial complex K is the
largest dimension of any simplex in K. Therefore, we have a
set of barycentric coordinates for any arbitrary point v inside
the simplicial complex K, which could be written in the same
form as Equation 1, where vi is a vertex of the simplicial
complex K, with the rule that if v is inside a simplex of K,
the subset of λi for this simplex is the set of λi corresponding
to its vertices of the simplex, and if v is outside a simplex
of K, each λi in the subset is zero.

B. Extrapolation

In order to allow users to exploit the task space as much as
they can, the extrapolation method has to be defined since the
original simplicial complex only has the interpolation inside
its convex hull. The exterior of the simplicial complex, or
Voronoi Region, basically has two different types, rectangle,
and sector as Figure 3 shows.

Fig. 3. Two different types of Voronoi Region. The orange zone is defined
as the rectangular Voronoi region, and the yellow zone is defined as the
sectoral Voronoi region.

For the rectangle type, the Voronoi Region consists of one
exterior edge of the simplicial complex and two extension
rays from each edge vertex, where the extension rays are
perpendicular to the edge. Since this exterior edge always
belongs to only one particular simplex in the simplicial
complex, we then define the extrapolation method as the
barycentric coordinates of this ”governor” simplex, allowing
the λi of the simplex to be any real number.

234

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

For the sector type, the Voronoi Region consists of two
extension rays from the same vertex of the exterior edge,
where the extension rays are perpendicular to each edge
that includes the vertex. In this case, the vertex belongs to
two exterior edges of the simplicial complex. The governor
simplices, in other words, are two simplices that include
one of the exterior edges, respectively. The point inside
this Voronoi Region could be defined as a blending of two
barycentric coordinates of the governor simplices according
to the angles of θ0, θ1,

v =

k∑
i=0

(
θ1
θ
λ0
i +

θ0
θ
λ1
i)vi, (2)

where θ = θ0 + θ1.

C. Simplicial Map
In the third step of our method, users will assign nodes

of the simplicial complex with a set of displacements of
actuators or points in lower-level simplicial complexes.

Assume that we have one simplicial complex in the task
space that consists of four task nodes, v1,v2,v3,v4, and
three actuators to achieve the task. Hence, a point v in
this task space could be represented as the vector form,
v = {λ1, λ2, λ3, λ4}, and its basis is {v1,v2,v3,v4}. For
each node vi, i ∈ {1, 2, 3, 4}, we have a particular set
of displacements of three actuators, wi = {wi1, wi2, wi3}
whose basis is the standard basis. Therefore, the simplicial
map f will be

f(v) =

4∑
i=1

λig(vi), (3)

where g(vi) = wi.
We now generalize the previous situation and define the

vertex map from the task space to the actuator space or the
lower level task space to be written as a function g(vi) =
w, where vi = {λi,0, . . . , λi,k} and w is a set of values
corresponding to actuators or points in low-level task space.
Then g can be extended to a continuous map f : |V| → |W|
defined by

f(v) =

k∑
i=0

λig(vi), (4)

where v = {λ0, . . . , λk} is the new input of the simplicial
complex.

D. Multi-linear Simplicial Maps
Multi-linear simplicial mapping is used for the case the

user’s imagery has multiple graphs such as the catch and
move example written in Section III-E. Hence, we could write
K0 = {v0,1, v0,2}, i0 ∈ {1, 2} that represents the states of
catch and release, and K1 = {v1,1, v1,2, v1,3}, i1 ∈ {1, 2, 3}
that represents a top-view of the soft robot. Since this
combination can be regarded as a multi-linear mapping, we
therefore have

f(v1,v2) =

2∑
i0=1

3∑
i1=1

λ0,i0λ1,i1g(i0, i1), (5)

where g(i0, i1) is a set of displacements of actuators in which
the vertex combination of two simplicial complexes are i0,
i1, respectively.

In general, assuming we have a multi-linear function f :
V1 × ...×Vn → W, where Vi ∈ Rdi , W ∈ Rd, and di, d
are the dimensions of ViandW, respectively. The basis of
Vi is {ei1 , . . . , eij}, and the basis of W is {b1, . . . ,bm}.

f(v1, . . . ,vn) = f(v1 ⊗ · · · ⊗ vn)

=

j1∑
i1=0

· · ·
jn∑

ij=0

v1,i1 . . . vn,ijf(ei1 ⊗ · · · ⊗ eij)

= (v1 ⊗ · · · ⊗ vn) ◦T,
(6)

where the sign of ◦ is the Hadamard product, and the ⊗ is
the tensor product.

Considering that f(bi1 ⊗ · · · ⊗bij) =
∑d

k=0 A
k
i1...ij

bk is
our definition, f(bi1 ⊗ · · · ⊗ bij) could be also written as a
tensor T,

T = Ai1,...,ijei1,...,ij ,

where Ai1...ij = {A1
i1...,ij

, . . . , Ad
i1...ij

}, and ei1,...,ij = ei1⊗
· · · ⊗ eij).

Notice that the increasing dimensions when adding more
independent parameters might cause extra labor on matching
different postures to the vertex combinations. Users might be
more cautious when composing their task graphs.

V. TYPICAL USAGES

In this section, we will introduce two typical usages of the
proposed method by using an experimental GUI to create
control UIs for cable-driven soft robot arms.

A. Graphical User Interface for Evaluations

We developed a graphical user interface (GUI) to allow
users to design their desired robot control UI. The GUI shown
in Figure 4a is coded in a C# programming language. Qhull
[20],an open-source library implementing the Quickhull al-
gorithm, is used for computing the convex hull and Delaunay
triangulation. Notice that when we say ”canvas” of the UI, it
means the same as the simplicial complex introduced in the
previous section.

As the primary function of this system to implement our
approach, we design a canvas-based UI to allow users to
add/edit canvas, add/edit nodes, triangulate a manipulable
task space, and assign displacements of actuators or points
in low-level control UIs to nodes.

B. Soft Robot Arms

The soft robot arm system used for the evaluations is
shown in Figure 4b. This system consists of two standalone
soft arms with each arm having three driving cables sewed on
it as Figure 4c shows. The control mechanism was proposed
in Yamashita’s works [2]. The cables are distributed evenly
around the arm at an angle of 120 degrees and driven by three
DC motor modules belonging to Nuibot [21], a development

235

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

(a) GUI

(b) Soft Robot Platform (c) Soft Robot Platform: Bottom
View

Fig. 4. Software and Hardware Platform for Evaluations.

kit for cable-driven soft robots. The cable is sewed from
the bottom of the soft arm to the tip. The length of the
tendons made by cable sections is not precisely defined,
because we expect to evolve such manufacturing errors in
standard fabrication procedures and show that our method is
well adapted for this problem.

C. Manipulating Single Robot Arm

In this example, users first designed a simple simplicial
complex that only includes three nodes as the control UI.
Each vertex exactly matches a particular posture of the
left arm of the soft robot. Considered the ignorance of the
kinematic model for our soft robot, we directly adjust the
displacement values of actuators to perform a desired posture.
Then, users can directly manipulate the control UI’s point by
dragging the mouse to move around the task space created
by the proposed UI. The point in the control UI will be
interpolated and mapped to a set of displacements of three
motors. Finally, this control UI could easily manipulate the
soft robot arm, and the interpolated postures were matched to
the users’ expectations. The control UI, the defined postures,
and interpolated or extrapolated postures are shown in Figure
5.

D. Taking Soft Dice by Two Robot Arms

In this example, users created two separated control UIs
to enact a relatively complex robot task: taking a soft dice
by two robot arms. One control UI consisted of two nodes is
used to represent the taking and releasing status for the robot
arms. The other control UI have five nodes that represents
the coordinates of the dice from its top-view. The matching
targets of the map of two control UIs are both inputs of the
control UIs from two robot arms created previously. Since

two control UIs are composited as a bi-linear simplicial map,
users matched ten compositions of two sets of nodes in both
control UIs with the inputs of low-level control UIs which are
corresponding to the displacements of soft arms representing
particular postures. Finally, users could manipulate both soft
robot arms to take and release a soft dice on target positions.
The control UI, the defined postures, and interpolated or
extrapolated postures are shown in Figure 6.

VI. USER EVALUATION

To evaluate the usability of the proposed method, we
conducted a user evaluation. At the end of this evaluation,
we sought answers to three questions as follows:

• Is the proposed method convenient for casual users?
• Is the proposed method usable to create control UI for

soft robots?
• How long will it take to create desired control UI by

this proposed method in practice?
In order to let different casual users create control UIs

for the same robot tasks, this evaluation is conducted in the
tutorial style. The experimenter gave minimal supports to the
participants through all steps of the evaluation.

First, the experimenter created a control UI for the left
arm of the soft robot as an example. Then the participants
would be asked to create a control UI for the right arm of the
soft robot in the same procedure as the experimenter showed
before. For both soft arms, the control UI had three state
nodes that represented the postures of the arm when a single
actuator had been pulling its corresponding driving cable. The
procedures to create a control UI followed the one introduced
in Section III.

After finishing the creation of both soft arms, the partic-
ipants were asked to create a high-level control UI for the
manipulation task to generate a synchronized motion of both
soft arms. The mapping targets of this high-level control UI
were then the UIs of both two soft arms created previously.

A. Results and Discussion

In this evaluation, we invited 5 participants to use our
GUI to accomplish a series of soft robot manipulation
tasks. Notice that we only evaluate the participants with
an interpolation-only GUI that partially implemented our
method in this evaluation due to the schedule. The par-
ticipants who joined this experiment are categorized into
”Experienced with Soft Robots” and ”Non-experienced with
Soft Robots.”

Most participants achieved the synchronized manipulating
task in their way and enjoyed the UI they created to con-
trol soft arms for other simple manipulation tasks freely.
Some participants also discussed the possibilities of achieving
complex tasks and actively asked how to realize that in
detail, which indicated they already had a clear awareness
of the proposed concept and desired an advanced usage of
the system. Also, these discussions showed that this method
could inspire more participants’ imagination of expressive
applications of cable-driven soft robots.

236

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

(a) Control UI (b) Assigned poses and interpolated results

Fig. 5. Manipulating a single robot arm(Left only) Manipulating soft robots by three set initial vertices (node 1-3) of the simplicial complex with three
pose-related actuator displacements. The green points in the control UI decide the interpolated and extrapolated results of actual postures of soft robots.

(a) Control UI (b) (Partial)Assigned poses (c) Interpolated results

Fig. 6. Manipulating soft robots by five set initial vertices (node 1-3 and white nodes) of the simplicial complex with five pose-related actuator displacements.
The combinations of green and brown points in each control UIs decide the interpolated and extrapolated results of actual postures of soft robots.

The purpose of the synchronized manipulating task is to
evaluate the chain mapping in a practical environment. The
level structure of control UIs lets the participants focus on
the current task and do not need to care about the lower-level
UIs’ details. Compared to manipulating actuators embedded
in the soft robot directly, the chain of maps promises more
possibilities for applications of soft robots. Additionally, the
level structure could be used for the collaborative working of
multiple soft robots.

Interestingly, the top-level control UIs created by different
participants showed some similarities in their layouts. Almost
all participants in this evaluation preferred to create their
interpretations of the performing task into spatial-related
layouts. This suggested that the spatial configuration of nodes
is reasonable and understandable for most people. Despite
these spatial similarities, the non-experienced group’s layouts
showed that they were more flexible in the geometric form
than the experienced group, implying that experienced users
might prefer to use a precise numerical representation of

information due to their prior knowledge. However, the
completeness of the performing task was acceptable for all
participants, which proved that the task-oriented robustness
to unspecified geometric representations is benefited by the
topological aspect of the simplicial complex.

Although the current user experience of our GUI signifi-
cantly impacted the proficiency when creating control UIs,
the feasibility of our method has been confirmed in this
evaluation. All the participants finished their experiments
within 1 hour. In summary, we believe that the results of
user evaluations have answered the questions we raised at
the beginning of this section.

However, there were difficulties in the use of this
interpolation-only GUI of our method during the experi-
ments. When users transited from one task state to another,
the trajectory of the controller approximated to be a series
of line segments with imperfect geometric shapes. Moreover,
users were used to finding the desired pose following their
hand movement trends of manipulating the control point

237

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

with their observations. The lack of extrapolation violated
the intuitions of the participants while the visual-tactile
linkage was working. This result prompted us to implement
the extrapolation method in further evaluations due to its
importance.

VII. CONCLUSION AND FUTURE WORK

This paper adopted a simplicial mapping method to allow
casual users to design a task-oriented control UI for a cable-
driven soft robot. Compared to conventional kinematic model
methods, our method does not need prior knowledge and
reduces the time and labor costs. The task space created by
the proposed method provides more freedom, especially for
casual users. Several practical cases that use the proposed
GUI to create control UIs for particular tasks of a cable-
driven soft robot arm system have been investigated. A
qualitative user evaluation showed the proposed method’s us-
ability for casual users and suggested further quantitative user
evaluations. This paper offers a generic solution well-adapted
to the previously-mentioned question, lacking flexibility and
reusability of soft robot control interfaces.

The soft robot we tested here was the cable-driven type;
however, we believe this method can solve more generic
problems located in the whole of soft robotics. We look
forward to having more researchers join us to explore the
possibilities of this method. In this paper, the user’s obser-
vation is used as a baseline for how a soft robot performs
tasks that do not need additional devices. User’s personal
experiences, therefore, influence the results.

For future work, we would like to combine this method
in different configuration spaces that might be defined by
a physics-based model or a statistic data-driven model. For
example, we could map our user-defined task space to the
configuration space of the FEM model to accomplish a
simulation for the soft robot under an agile design and devel-
opment. Moreover, a study of the relationship or combination
of the proposed method with the end-effector’s coordinates
could be considered as a next step. Since the proposed
method is to solve the kinematics problem without physics-
based models, the combinations of force control or dynamics
control will open more possibilities for soft robotics. This
improvement of our GUI is also important and would be
helpful to practice.

REFERENCES

[1] M. W. Hannan and I. D. Walker, “Kinematics and the Implementation
of an Elephant’s Trunk Manipulator and Other Continuum Style
Robots,” Journal of Robotic Systems, vol. 20, no. 2, pp. 45–63, 2003.

[2] Y. Yamashita, T. Ishikawa, H. Mitake, Y. Takase, F. Kato,
I. Susa, S. Hasegawa, and M. Sato, “Stuffed toys alive!
cuddly robots from fantasy world,” in ACM SIGGRAPH 2012
Emerging Technologies, ser. SIGGRAPH ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online]. Available:
https://doi.org/10.1145/2343456.2343476

[3] S. Seok, C. D. Onal, K.-J. Cho, R. J. Wood, D. Rus, and S. Kim,
“Meshworm: A Peristaltic Soft Robot with Antagonistic Nickel Ti-
tanium Coil Actuators,” IEEE/ASME Transactions on Mechatronics,
vol. 18, no. 5, pp. 1485–1497, 2013.

[4] A. D. Marchese, K. Komorowski, C. D. Onal, and D. Rus, “Design
and Control of a Soft and Continuously Deformable 2D Robotic Ma-
nipulation System,” 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2189–2196, 2014.

[5] J. P. King, D. Bauer, C. Schlagenhauf, K.-H. Chang, D. Moro,
N. Pollard, and S. Coros, “Design. Fabrication, and Evaluation of
Tendon-Driven Multi-Fingered Foam Hands,” 2018 IEEE-RAS 18th
International Conference on Humanoid Robots (Humanoids), vol. 00,
pp. 1–9, 2018.

[6] D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467–475, 2015.

[7] H. Wang, W. Chen, X. Yu, T. Deng, X. Wang, and R. Pfeifer,
“Visual Servo Control of Cable-Driven Soft Robotic Manipulator,”
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 57–62, 2013.

[8] C. Duriez, “Control of Elastic Soft Robots based on Real-Time Finite
Element Method,” 2013 IEEE International Conference on Robotics
and Automation, pp. 3982–3987, 2013.

[9] M. Rolf and J. J. Steil, “Efficient Exploratory Learning of Inverse
Kinematics on a Bionic Elephant Trunk,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 25, no. 6, pp. 1147–1160, 2014.

[10] M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri, and C. Laschi,
“Neural Network and Jacobian Method for Solving the Inverse Statics
of a Cable-Driven Soft Arm With Nonconstant Curvature,” IEEE
Transactions on Robotics, vol. 31, no. 4, pp. 823–834, 2015.

[11] Y. Takase, H. Mitake, Y. Yamashita, and S. Hasegawa, “Motion
generation for the stuffed-toy robot,” in The SICE Annual Conference
2013, Sep. 2013, pp. 213–217.

[12] J. M. Bern, K.-H. Chang, and S. Coros, “Interactive design of animated
plushies,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp.
1–11, 2017.

[13] C. Schlagenhauf, D. Bauer, K.-H. Chang, J. P. King, D. Moro, S. Coros,
and N. Pollard, “Control of Tendon-Driven Soft Foam Robot Hands,”
2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids), vol. 00, pp. 1–7, 2018.

[14] P. Rademacher, “View-dependent geometry,” Proceedings of the 26th
annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’99, pp. 439–446, 1999.

[15] T. Ngo, D. Cutrell, J. Dana, B. Donald, L. Loeb, and S. Zhu, “Acces-
sible animation and customizable graphics via simplicial configuration
modeling,” Proceedings of the 27th annual conference on Computer
graphics and interactive techniques - SIGGRAPH ’00, pp. 403–410,
2000.

[16] T. Igarashi, T. Moscovich, and J. F. Hughes, “Spatial keyframing for
performance-driven animation,” ACM SIGGRAPH 2007 courses on -
SIGGRAPH ’07, p. 25, 2007.

[17] C. F. R. III, P. J. Sloan, and M. F. Cohen, “Artist-Directed Inverse-
Kinematics Using Radial Basis Function Interpolation,” Computer
Graphics Forum, vol. 20, no. 3, pp. 239–250, 2001.

[18] M. d. Berg, M. v. Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational Geometry, Algorithms and Applications. Springer,
2000.

[19] M. Herlihy, D. Kozlov, and S. Rajsbaum, Distributed computing
through combinatorial topology. Newnes, 2013.

[20] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algo-
rithm for convex hulls,” ACM TRANSACTIONS ON MATHEMATICAL
SOFTWARE, vol. 22, no. 4, pp. 469–483, 1996.

[21] G. Zile, D. Binod, L. Haoyan, N. Tomoka, M. Hironori, and H. Shoichi,
“Nuibot: Motion control system and visual programming environment
for string driven soft mechanism,” The Proceedings of JSME annual
Conference on Robotics and Mechatronics (Robomec), vol. 2019, pp.
1P2–G10, 2019.

238

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on May 20,2023 at 04:27:39 UTC from IEEE Xplore. Restrictions apply.

